Analisis Foto Udara dengan Multicopter di Daerah Penghasil Pasir Besi Karangwuni, Temon, Kulon Progo

Indreswari Suroso

Abstract


 Aerial Photo Analysis Using Multicopters in the Iron-Sand Producing Area in Karangwuni, Temon, Kulon Progo. This research was conducted in areas that have the potential for iron-sand, which is in Karangwuni village, Temon Subdistrict,  Kulon Progo regency. The aim of this research is to examine the surface of the largest iron-sand producing areas in Kulon Progo. The specifications of the drones used in this research are as follows: frame :F450Flight Control: DJI Naza M-Lite; Propeller: 1045 Prop; Motorcycle: brushless sunnsky 980 kVa; ESC: Skywalker 40 Ampere 3s; Battery: Ace 3s Gens 5000mAH; Remote: Turnigy 9XR together with Frsky Tanseiver; and Camera: Xiaomi Yi 4k international edition. The drone made the mapping by recording the surface of the area.  Once the drone was assembled, it was tested to fly. When the drone has flown perfectly, a camera was added on the lower side. So, the image of the surface were mapped using the camera which was attached to the drone. Before mapping the area using the drone, drone was tested again. The initial step of assembling was to choose the component.  The drone could fly up to 70 meters until 100 meters with a duration up to 10 minutes using the payload drone multicopter weighed 1.5 kilograms. The result of this aerial photo analysis on mapping the largest iron-sand producing area in Kulon Progo regency showed that the area mapped are very sandy and very arid, therefore it cannot be used for an agricultural land. The government of Kulon Progo regency sets a regulation that this area could be used as an iron-sand mining because this land is no longer suitable for an agricultural land as in previous times.

 

ABSTRAK

Penelitian ini dilakukan di daerah yang memiliki potensi pasir besi, yaitu di daerah Karangwuni, Kecamatan Temon, Kabupaten Kulon Progo. Tujuan penelitian ini adalah untuk meneliti permukaan wilayah daerah penghasil pasir besi terbesar di Kulon Progo. Spesifikasi drone yang digunakan penelitian ini adalah dengan spesifikasi frame: F450; pengendali penerbangan: DJI Naza M-Lite; propeller: 1045 Prop; sepeda motor: brushless sunnsky 980 kVa; ESC: Skywalker 40 Ampere 3s; baterai: Ace 3s Gens 5000mAH; remote: Turnigy 9XR dengan Frsky Tanseiver; dan kamera: Xiaomi Yi 4k edisi Internasional. Cara drone melakukan pemetaan adalah dengan merekam gambar permukaan wilayah.  Drone selesai dirakit, lalu diuji terbang. Jika drone telah terbang dengan sempurna, dilanjutkan dengan penambahan kamera di sisi bawah. Gambar permukaan area menggunakan kamera yang dipasang pada drone. Sebelum memetakan dengan drone, drone terlebih dahulu diuji lagi. Tahap awal perakitan adalah pemilihan komponen. Drone ini memiliki ketinggian dari 70 hingga 100 m dengan durasi hingga 10 menit menggunakan payload drone multicopter 1,5 kg. Drone ini  menggunakan kamera DJI  Naza M-Lite sehingga drone dapat memotret area seluas 1,5 km. Hasil penelitian foto udara pada pemetaan di daerah penghasil pasir besi terbesar di Kulon Progo ini adalah ternyata daerah tersebut berpasir dan sangat gersang sehingga tidak dapat dijadikan lahan pertanian. Pemerintah Kulon Progo memberikan izin untuk penambangan pasir besi dikarenakan lahan ini sudah tidak cocok untuk lahan pertanian seperti dahulu lagi.

 

 


Keywords


aerial photo; multicopter; Kulon Progo; drone; mapping

Full Text:

PDF

References


Addala, B. G., & Rao, V. (2016). Flying Drone Wifi Communication. International Journal of Advance Research in Computer Science and Management Studies, 4(9), 111–116.

Anweiler, S., & Piwowarski, D. (2017). Multicopter Platform Prototype For Environmental Monitoring. Journal of Cleaner Production, 155, 204–211.

Ariyanto, M., Setiawan, J. D., Munadi, & Prabowo, T. (2017). Uji Terbang Autonomous Low Cost Fixed Wing UAV Menggunakan PID Compensator. ROTASI, 19(4), 231–236.

Ariyanto, M., Setiawan, J. D., Prabowo, T., Haryanto, I., & Munadi. (2018). Design of a Low-Cost Fixed Wing UAV. MATEC Web of Conferences 159, 02045. https://doi.org/10.1051/matecconf/201815902045

Chang, C. C., Wang, J. L., Chang, C. Y., Liang, M. C., & Lin, M. R. (2016). Development of a Multicopter-Carried Whole Air Sampling Apparatus and Its Applications in Environmental Studies. Chemosphere, 144, 484–492.

Dhanalakshmi, B., Shalini, E., & Nivedha, M. (2019). Power Management System and Theft Detection Using Internet of Things (IoT). IOSR Journal of Computer Engineering (IOSR-JCE), 21(2), 48–52.

Du, T., Schulz, A., Zhu, B., Bickel, B., & Matusik, W. (2016). Computational Multicopter Design. ACM Trans Graph, 35(6), 1–10.

Evan, T., & Maarten, U. D. H. (2018). 3D Multi-Copter Navigation and Mapping Using GPS, Inertial, and LiDAR. Journal of the Institute of Navigation, 63(2), 205–220.

Gordon, Okoy, A., Onojo, J., & Onuekwusi, N. (2016). Design and Implementation of a Real Time Wireless Quadcopter for Rescue Operations. American Journal of Engineering Research (AJER), 5(9), 130–138.

Haque, M. R., Muhammad, M., Swarnaker, D., & Arifuzzaman, M. (2014). Autonomous Quadcopter For Product Home Delivery. In International Conference on Electrical Engineering and Information & Communication Technology.

Heredia, G., Jimenez-Cano, A. E., Sanchez, I., Llorente, D., Vega, V., Braga, J., & Ollero, A. (2014). Control of a multirotor outdoor aerial manipulator. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3417–3422.

Hovland, V. M. M. O. G. (2015). Multicopter Design Optimization and Validation Modeling. Identi_cation and Control, 36(2), 67–79.

Lange, S., Sunderhauf, N., & Protzel, P. (2009). A Vision Based Onboard Approach for Landing and Position Control of an Autonomous Multirotor UAV in GPS-denied Environments. International Conference on Advanced Robotics, 1–6.

Marcaccio, J. V., Markle, C. E., & Chow-Fraser, P. (2016). Use of Fixed-Wing and Multi-Rotor Unmanned Aerial Vehicles to Map Dynamic Changes in a Freshwater Marsh. Journal Unmanned Vehicle System, 4, 193–202.

Matsusitha, E., Arai, K., Tsukada, C., & Furumoto, Y. (2017). Use of aerial image to 3D-disaster prevention map by multicopter (Nagano City Imoi). In AIP Proceedings 1892. https://doi.org/10.10631/1.5005671

Molina, C. . (2017). Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS Journal of Photogrammetry and remote Sensing, 92, 79–97.

N, S. K., & Sankaralingam, K. (2016). Design And Control Implementation Of Quadcopter. International Journal of Mechanical And Production Engineering, 4(5).

Noda, Y., Nakata, T., Ikeda, T., Chen, D., Yoshinaga, Y., Ishibashi, K., … Liu, H. (2018). Development of Bio-Inspired Low-Noise Propeller for a Drone. Journal of Robotics and Mechatronics, 30(3), 337–347.

Ostojic, J., Stankonvi, S., & Tejic, B. (2015). Design Control and Aplication of Quadcopter. International Journal of Industrial Engineering and Management (IJIEM), 6(1), 43–48.

Prasetyo, E. E., & Suroso, I. (2018). Analisis Pemetaan Daerah Rawan Longsor Dengan Drone Type Multicopter Di Somangari Kecamatan Kaligesing Kabupaten Purworejo. Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 5(2), 5–15.

Puttock, A. K., Cunliffe, A. M., Anderson, K., & Brazier, R. E. (2015). Aerial photography collected with a multirotor drone reveals impact of Eurasian beaver reintroduction on ecosystem structure. Journal of Unmanned Vehicle System, 3, 123–130.

Suroso, I. (2018a). Analisis Pemetaan Daerah Rawan Banjir Dan Longsor Dengan Drone Type Multicopter Di Girimulyo, Kabupaten Kulonprogo. Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 5(1), 34–43.

Suroso, I. (2018b). Analisis Peran Unmanned Aerial Vehicle Jenis Multicopter dalam Meningkatkan Dunia Fotografi Udara di Lokasi Jalur Slatan Menuju Calon Bandara Baru di Kulonprogo. REKAM: Jurnal Fotografi, Televisi, dan Animasi, 14(1), 17–25.

Suroso, I. (2018c). Analysis Of Mapping Multicopter Drones In The Entrance Area Of Prospective New Airports In Congot, Temon, Kulonprogo, Yogyakarta. Journal of Applied Geospatial Information, 2(2), 130–134.

Suroso, I. (2019). Analysis of Mapping Area of Flood With Drone Type Multicopter in Girimulyo, Kulonprogo. In IOP Conference Series: Earth and Environmental Science, 271(1), 012013. IOP Publishing.

Suroso, I., & Irmawan, E. (2018). Analysis Of Aerial Photography With Drone Type Fixed Wing In Kotabaru, Lampung. Journal of Applied Geospatial Information, 2(1), 102–107.

Suroso, I., & Irmawan, E. (2019). Analysis of UAV Multicopter of Air Photography in New Yogyakarta International Airports. TELKOMNIKA, 17(1), 521–528.

Thua, K. M., & Gavrilova, A. I. (2016). Designing and Modeling of Quadcopter Control System Using L1 Adaptive Control. International Symposium, 528–535. Diambil dari www.scincedirect.com

Yaprak, S., Yildirim, O., & Susam, T. (2017). UAV Based Agricultural Planning and Landslide Monitoring. Journal of Land Use, Mobility ND Environment, 10(3).




DOI: https://doi.org/10.24821/rekam.v16i1.3474

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

View Rekam Stats