Analisis Ulasan Indie Video Game Lokal pada Steam Menggunakan Analisis Sentimen dan Pemodelan Topik Berbasis Latent Dirichlet Allocation

Mochamad Yudha Febrianta, Sri Widiyanesti, Syahrul Robbiansyah Ramadhan

Abstract


Video game merupakan produk Ekonomi Kreatif yang berkembang pesat dan mempengaruhi perekonomian dunia. Di antara para pelakunya, pengembang indie video game memiliki keterbatasan sumber daya dan bergantung pada jasa distribusi digital untuk menjual produknya. Steam merupakan platform distribusi digital video game dengan fitur ulasan yang dapat dijadikan acuan pengembangan video game. Ulasan produk online cenderung berjumlah banyak dan beragam sehingga menimbulkan tantangan bagi para pengembang indie video game untuk menganalisisnya. Penelitian ini bertujuan untuk melakukan analisis berbasis machine learning terhadap ulasan produk indie video game di Steam secara otomatis. Metode yang digunakan adalah analisis sentimen dengan algoritma klasifikasi Naïve Bayes dan pemodelan topik berbasis LDA menggunakan perangkat lunak Rapidminer dan RStudio. Hasil penelitian menunjukkan sentimen positif dominan sebesar 69.8% dengan akurasi algoritma 75.45%. Penelitian ini juga menunjukkan bahwa “story”, “character”, “music”, dan “art” termasuk istilah yang sering muncul di antara topik-topik dominan.


Keywords


video game; analisis sentimen; model topik; machine learning; ulasan produk

References


Antariksa, B. (2012). Konsep Ekonomi Kreatif: Peluang dan Tantangan Dalam Pembangunan di Indonesia.

Asosiasi Game Indonesia. (2020). Katalog Game Lokal Indonesia: Hari Game Indonesia 2020 08.08.2020. https://static1.squarespace.com/static/5ddb7b78259a2f4dfb3423be/t/5f3678506eab486af6656959/1597405280903/Katalog+Game+Lokal+HARGAI+2020.pdf

Badan Ekonomi Kreatif. (2018). Opus: Ekonomi Kreatif Outlook 2019. In Badan Ekonomi Kreatif.

Badan Pusat Statistik Republik Indonesia. (2019). Berita Resmi Statistik: Pertumbuhan Ekonomi.

Chambers, C., Feng, W. C., Sahu, S., & Saha, D. (2005). Measurement-based characterization of a collection of on-line games. Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, 1–14. https://doi.org/10.1145/1330107.1330109

Cristian, J. (2020). Topic Modeling LDA using textmineR and tidytext. RPubs. https://rpubs.com/jojoecp/643113

Denby, L. (2019). Indie Game Marketing 101 – Part 1 – A beginner’s guide to games marketing. Game If You Are. https://gameifyouare.com/2019/05/15/indie-game-marketing-101-part-1-a-beginners-guide-to-games-marketing/

Ernst and Young. (2015). Cultural times - The first global map of cultural and creative industries (Vol. 1, Issue 1). https://doi.org/10.1016/j.physletb.2006.08.021

Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1). https://doi.org/10.1186/s40537-015-0015-2

Garda, M. B., & Grabarczyk, P. (2016). Is Every Indie Game Independent? Towards the Concept of Independent Game. The International Journal of Computer Game Research, 16(1). http://gamestudies.org/1601/articles/gardagrabarczyk

Henges, L. (2020). Examining the indie ins and outs of today’s game distribution platforms. Gamasutra. https://www.gamasutra.com/view/news/363919/Examining_the_indie_ins_and_outs_of_todays_game_distribution_platforms.php

Howkins, J. (2007). The Creative Economy: How People Make Money From Ideas (2nd ed., Vol. 1, Issue 1). Penguin Group.

Ignatow, G., & Mihalcea, R. (2018). An Introduction to Text Mining: Research Design, Data Collection, and Analysis. SAGE Publications.

Joshi, N., & Itkat, S. (2014). A Survey on Feature Level Sentiment Analysis. International Journal of Computer Science and Information Technologies, 5(4), 5422–5425. http://www.ijcsit.com/docs/Volume 5/vol5issue04/ijcsit20140504135.pdf

Kang, H.-N., Yong, H.-R., & Hwang, H.-S. (2017). A Study of Analyzing on Online Game Reviews Using a Data Mining Approach: STEAM Community Data. International Journal of Innovation, Management and Technology, 8(2), 90–94. https://doi.org/10.18178/ijimt.2017.8.2.709

Khomsah, S. (2020). Naive Bayes Classifier Optimization on Sentiment Analysis of Hotel Reviews. Jurnal Penelitian Pos Dan Informatika, 10(2), 157–168. https://doi.org/10.17933/jppi.2020.100206

Knoema. (2019). Top 100 Countries by Game Revenues. Knoema. https://knoema.com/infographics/tqldbq/top-100-countries-by-game-revenues

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159–174.

Lin, D., Bezemer, C. P., Zou, Y., & Hassan, A. E. (2019). An empirical study of game reviews on the Steam platform. In Empirical Software Engineering (Vol. 24, Issue 1). Empirical Software Engineering. https://doi.org/10.1007/s10664-018-9627-4

Martin, C. B., & Deuze, M. (2009). The independent production of culture: A digital games case study. Games and Culture, 4(3), 276–295. https://doi.org/10.1177/1555412009339732

Mathews, C. C., & Wearn, N. (2016). How Are Modern Video Games Marketed? The Computer Games Journal, 5(1–2), 23–37. https://doi.org/10.1007/s40869-016-0023-2

Minor, J. (2020). The Best Places to Buy and Rent PC Games Online in 2020. PC Mag. https://sea.pcmag.com/console-games/38669/the-best-places-to-buy-and-rent-pc-games-online

Newzoo. (2019). 2019 Global Games Market Report. https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2019-light-version/

Newzoo. (2020). 2020 Global Games Market Report. https://platform.newzoo.com/reports

Oakley, K., & O’Connor, J. (2015). The Routledge companion to the cultural industries. In Cultural Trends (1st ed., Vol. 25, Issue 2). Routledge.

Ramadhan, A. F. (2019). Pengaruh Online consumer review, Potongan Harga, dan Citra Merek terhadap Keputusan Pembelian Game pada Aplikasi STEAM (Studi Pada Mahasiswa Universitas Brawijaya). https://www.semanticscholar.org/paper/Pengaruh-Online-consumer-review%2C-Potongan-Harga%2Cdan-Ramadhan/a0436648fb02569c6710f5df372a1f1273442558?p2df

Sharma, P., Singh, D., dan Singh, A.(2015). Classification algorithms on a large continuous random dataset using rapid miner tool. 2015 2nd International Conference on Electronics and Communication Systems, 704-709.

Smith, A. (2019). They Create Worlds. In They Create Worlds (1st Edition). CRC Press. https://doi.org/10.1201/9780429423642

Toivonen, S., & Sotamaa, O. (2010). Digital distribution of games: The players’ perspective. Future Play 2010: Research, Play, Share - International Academic Conference on the Future of Game Design and Technology, 199–206. https://doi.org/10.1145/1920778.1920806

United Nations. (2018). UNCTAD Creative Economy Outlook and Country Profile report (2018) (p. 445). United Nations Conference on Trade and Development. https://unctad.org/en/PublicationsLibrary/ditcted2018d3_en.pdf

Vashisht, P., & Gupta, V. (2016). Big data analytics techniques: A survey. Proceedings of the 2015 International Conference on Green Computing and Internet of Things, ICGCIoT 2015, 264–269. https://doi.org/10.1109/ICGCIoT.2015.7380470

Wilson, J. L. (2020). Steam. PC Mag. https://sea.pcmag.com/pc-games/5787/steam

Zackariasson, P., & Wilson, T. L. (2012). The video game industry: Formation, present state, and future (1st ed.). Routledge.

Zuo, Z. (2018). Sentiment Analysis of Steam Review Datasets using Naive Bayes and Decision Tree Classifier.




DOI: https://doi.org/10.24821/jags.v7i2.5162

Article Metrics

Abstract view : 0 times
PDF (Bahasa Indonesia) - 0 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Syahrul Robbiansyah Ramadhan, Sri Widiyanesti, Mochamad Yudha Febrianta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Journal of Animation and Games Studies (JAGS) - ISSN 2460-5662 (print) || 2502-499X (online)

Visitor Number  : View JAGS Stats