Pergerakan Kelompok Non Playable Character Menuju Target Berbasis Artificial Fish Swarm Algorithm
Abstract
Nowadays RTS games is the most desirable game to be played. This research is to create a simulation of the movement of groups of NPC were able to overcome the limitations of visual jangkaun agent to detect or determine the intended target. Autonomous agents move randomly for up to find the target. At the time of moving towards the target NPC is designed to move towards the visual range that belongs to the dipunyainya step so as to find the target, while still taking into account the position of the other NPCs in order to avoid collisions and to be able to avoid obstacles. Artificial Fish Swarm Algorithm chosen in this study because it mimics the concept of visual range of fish is limited when moving in search of food around the neighborhood life
Keywords: autonomous agents, NPC, the visual range, step, artificial fish swarm algorithm.
Abstrak
Saat ini game RTS merupakan game yang paling diminati untuk dimainkan. Penelitian ini merupakan penelitian untuk membuat simulasi pergerakan kelompok NPC yang mampu mengatasi keterbatasan jangkaun visual agen mendeteksi atau mengetahui target yang dituju. Agen otonom bergerak secara acak untuk sampai menemukan target. Pada saat bergerak menuju target NPC dirancang bergerak kearah jangkauan visual yang dipunyai dengan step yang dipunyainya sehingga dapat menemukan targetnya, namun tetap memperhitungkan posisi NPC lain agar tidak terjadi tabrakan dan harus mampu menghindari halangan. Artificial Fish Swarm Algorithm dipilih dalam penelitian ini karena meniru konsep dari jangkauan visual dari ikan yang terbatas ketika bergerak dalam mencari makanan di sekitar lingkungan hidupnya
Kata kunci: agen otonom, NPC, jangkauan visual, step, artificial fish swarm algorithm.
References
Ahmed, H., & Glasgow, J. (2012). Swarm Intelligence : Concepts, Models and Applications. Ontario: School of Computing Queen’s University Kingston.
Cai, Y. (2010). Artificial Fish School Algorithm Applied in a Combinatorial Optimization Proble. I,J, Intelligent Systems and Applications, 37-43.
Chen, Y. (2011). Swarm Fish The Artificial Fish Swarm Algorithm (AFSA). SwarmsLAB.
Doherty, D., & O’Riordan, C. (n.d.). The Design and Implementation of AI in Modern Computer Games. Department of Information Technology National University of Ireland Galway.
Franklin, S. (1997). Autonomous Agents as Embodied AI. Cybernetics and System, 28 : 6, 499-520.
Huang, Z., & Chen, Y. (2013). An Improved Artificial Fish Swarm Algorithm based on Hybrid Behavior Selection. International Journal of Control and Automation Vol.6, No.5, 103-116.
Ingham, J. (1997). What is an Agent ? Centre for Software Maintenance University of Durham.
Millington, I. (2006). Artificial Intelligent for Games. Morgan Kauffman Publisher,.
Neshat, M., Sepidnam, G., Sargolzaei, M., & Najaran Toosi, A. (2012). Artificial Fish swarm algorithm: a survey of the state of the-art, hybridization, combinatorial and indicative applications. Springer Science+Business Media B.V.
Reynolds, C. W. (July 1987). locks, Herds, and Schools: A Distributed Behavioral Model. ACM SIGGRAPH '87 Conference Proceedingscs, Computer Graphics, 21(4), 25-34.
Yazdani, B., & Saman, B. (2013). A new Algorithm Based on Improved Artificial Fish Swarm Algorithm for Data Clusterin. International Journal of Artifciial Intelligence Vol. 11 No. A13.
DOI: https://doi.org/10.24821/jags.v1i2.1303
Article Metrics
Abstract view : 0 timesABSTRAK - 0 times FULL TEXT - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 Journal of Animation & Games Studies
Journal of Animation and Games Studies (JAGS) - ISSN 2460-5662 (print) || 2502-499X (online)